
A Distributed k-core Decomposition
Algorithm for Dynamic Graphs

Paul Jakma1, Marcin Orczyk, Colin Perkins1,
Marwan Fayed2

1University of Glasgow,

2University of Stirling

2012-12-10

A Distributed k-core Decomposition
Algorithm for Dynamic Graphs

Paul Jakma1, Marcin Orczyk, Colin Perkins1,
Marwan Fayed2

1University of Glasgow,

2University of Stirling

2012-12-1020
12

-1
2-

12
A Distributed k-core Decomposition Algorithm for Dynamic
Graphs

Hi, my name is Paul Jakma. I’m with the School of Computing
Science at the University of Glasgow, and I’m presenting a poster
on A Distributed k-core decomposition algorithm for dynamic
graphs. I’m going to primarily cover my motivation for this work,
and then introduce our contribution.

Routing Table Scalability

Routing Table Scalability

20
12

-1
2-

12
A Distributed k-core Decomposition Algorithm for Dynamic
Graphs

Routing Table Scalability

1. I’m interested in the rate at which routing tables increase in
size with any increases in the size of the network. Particularly
for the Internet. Many common routing protocols in use today
are shortest-path based, including BGP. They produce routing
tables which scale supra-linearly with the size of the network.
So If a network grows very quickly, then router resources could
struggle to keep up. The internet has at times in the past
seen fast growth, and some people worry it may do so again.
So it would be useful to have routing protocols whose state
scaled better.

Landmark Based Routing

Landmark Based Routing

20
12

-1
2-

12
A Distributed k-core Decomposition Algorithm for Dynamic
Graphs

Landmark Based Routing

1. One way to achieve that is to do routing using landmarks.
Such as the scheme described by Thorup and Zwick, and
Cowen before them. The general idea is each node stores
routes only for a few other nodes in a cluster around it, as well
as for a select set of “landmark” nodes. Messages for any
other nodes are sent towards the landmark associated with
that node. The problem is there isn’t yet a complete
distributed, routing protocol based on this suitable for the
Internet. One barrier to that is that we need a distributed way
to pick or nominate the landmarks.

k-core Graph Decomposition

k-core Graph Decomposition

20
12

-1
2-

12
A Distributed k-core Decomposition Algorithm for Dynamic
Graphs

k-core Graph Decomposition

1. There is a graph algorithm that looks like it could help, called
the k-core or k-shells graph decomposition. What this does is
it assigns every node to a series of concentric shells, so that a
node in a k-core must have at least k other neighbours in that
core. The highest cores in a graph should be more highly
interconnected and more central cores of the graph.
Unfortunately, the algorithm known for this required global
knowledge of the graph. There was no distributed algorithm
known, that I could use to help me solve my distributed
landmark selection problem.

Distributed k-core Graph Decomposition
1: for all n ∈ N do
2: Sn ← deg // initialise k-value for each neighbour
3: end for
4: kt ← kbound (S)
5: send_to_neighbours(〈kt〉)
6: loop
7: t ← t + 1
8: for any n ∈ N do // wait for message
9: Sn = receive(n)

10: kt ← kbound (S)
11: if kt 6= kt−1 then
12: send_to_neighbours(〈kt〉)
13: end if
14: end for
15: end loop

Distributed k-core Graph Decomposition
1: for all n ∈ N do
2: Sn ← deg // initialise k-value for each neighbour
3: end for
4: kt ← kbound (S)
5: send_to_neighbours(〈kt〉)
6: loop
7: t ← t + 1
8: for any n ∈ N do // wait for message
9: Sn = receive(n)

10: kt ← kbound (S)
11: if kt 6= kt−1 then
12: send_to_neighbours(〈kt〉)
13: end if
14: end for
15: end loop

20
12

-1
2-

12
A Distributed k-core Decomposition Algorithm for Dynamic
Graphs

Distributed k-core Graph Decomposition

1. Our contribution then is this distributed, continuous form of
the algorithm, to find the k-core decomposition of a graph or
network. It works by having each node start from a clear
upper-bound on their maximum k-core value, which is the
node’s absolute degree. Then all the nodes collaborate to
progressively tighten down this upper-bound, until it converges
on the correct, maximal k-core value. So each node can find
its maximal k-core value, keeping no more state than the value
of their neighbours. Our preliminary results suggest it scales
reasonably well both in runtime and in communication
overhead on Internet AS graphs. Thank you for your time.

Backup: Maximum k-core v Messages Sent

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 5 10 15 20 25 30 35

M
es

sa
ge

s
se

nt

Maximum k-core

Backup: Maximum k-core v Simulation ticks

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35

Si
m

ul
at

io
n

tic
ks

Maximum k-core

Backup: Graph size (nodes) v Messages sent

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5000 10000 15000 20000 25000

M
es

sa
ge

s
se

nt

Graph size (nodes)

	Appendix

